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Creole languages arise through contact between two or more languages from 
different families over a short space of time. They are often extremely low-
resource, with few datasets, NLP tools or translation systems available. 

The 2025 Shared Task on Machine Translation for Creole Languages 
uses datasets and baseline models (KreyòlMT and CreoleVal) from 
two recent works covering over 50 Creole languages between them [1].

For our submission, we focus on translation between seven 
Portuguese-based Creoles and English (eng):
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Six Creoles are spoken in West and Central Africa (right) and 
one is spoken in the Dutch Caribbean (left).

pov, pre, aoa, cri and fab are extremely low-resource, with 
100-300 parallel sentences provided by the organisers


kea has 1.5k organiser-provided sentences and pap has 67k. 
Both have featured in other MT and NLP modelling efforts.    
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Fig 1: Results of different fine-tuned based models 
(basic), trained with (1) initialising Creoles with 
Portuguese embeddings, (2) adding por data and (3) 
using distilled data). Results shown for pap (top) and 
aoa (bottom). KreyòlMT baselines in red.

Fig 2: Results of our best finetuned model 
checkpoints (FT), our best merged models, and our 

best post-edited (PE) system outputs on high-
resource (top) and low-resource (bottom) LPs on 

KreyòlMT test set. 

Baseline model is overfitted to 3 LPs

Fig. 3: Our models and baseline KreyòlMT model 
evaluated on our test set. Ours 1: best finetuned or 
merged models per LP on KMT test set. Ours 2: 
best eng-XX and XX-eng models on our test set.
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None of our models could beat the 
KreyòlMT baseline model scores on the 
KreyòlMT test set for kea, pov or cri, which 
were suspiciously high. When we re-
evaluate on our own test set (larger and 
more diverse), our models beat the 
baseline model in all LPs but one. 

D ifferent base models and FT 
settings benefit different LPs

Model mer ging and LLM post-editing with 
lexicons boosts performance on some LPs
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*including all train/val/
test splits and both 

KreyòlMT data and our 
data (including back-

translations).
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We present our submissions to the WMT 2025 Creole Translation Shared Task. For seven Portuguese-based Creole languages, we augment 
the Task datasets with extra parallel and monolingual data in four languages. We leverage a range of low-resource MT techniques including 
back-translation, data distillation and model merging, as well as cross-lingual transfer from Portuguese data and embedding weights. 
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